Deep-Learning-based Relocalization in Large-Scale outdoor Environment
نویسندگان
چکیده
منابع مشابه
Large-scale Artificial Neural Network: MapReduce-based Deep Learning
Faced with continuously increasing scale of data, original back-propagation neural network based machine learning algorithm presents two non-trivial challenges: huge amount of data makes it difficult to maintain both efficiency and accuracy; redundant data aggravates the system workload. This project is mainly focused on the solution to the issues above, combining deep learning algorithm with c...
متن کاملDeep Learning Methods for Efficient Large Scale Video Labeling
We present a solution to “Google Cloud and YouTube8M Video Understanding Challenge” that ranked 5th place. The proposed model is an ensemble of three model families, two frame level and one video level. The training was performed on augmented dataset, with cross validation.
متن کاملLarge-Scale Deep Learning on the YFCC100M Dataset
We present a work-in-progress snapshot of learning with a 15 billion parameter deep learning network on HPC architectures applied to the largest publicly available natural image and video dataset released to-date. Recent advancements in unsupervised deep neural networks suggest that scaling up such networks in both model and training dataset size can yield significant improvements in the learni...
متن کاملLarge-Scale Wi-Fi Hotspot Classification via Deep Learning
We describe the problem of classifying hundreds of millions of Wi-Fi hotspots using only connection and user count characteristics. We use a combination of deep learning and frequency analysis. Specifically, Convolution Neural Networks (CNN) capture the spatio-temporal relationship between adjacent connection/user counts across a 24hour × 7day matrix, while FFT (Fast Fourier Transforms) extract...
متن کاملDeep Learning and SVM Classification for Plant Recognition in Content-Based Large Scale Image Retrieval
The PlantCLEF 2016 challenge focused on tree, herb and fern species identification based on different types of images. The aim of the task was to classify the plants in the images to species and to give a confidence score depicting the probability that a prediction is true. We elaborated different classification methods for this challenge. We applied dense SIFT for feature detection and descrip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2020.12.2628